Prenatal Vitamin Ingredients

- Most contain copper, iron, zinc; some also contain chromium, manganese, molybdenum, selenium
- FDA Daily Values
 - Cu = 2 mg
 - Mn = 2 mg
 - Mo = 75 ug
 - Zn = 15 mg
- Detection of these beneficial minerals in meconium is expected

Expectations for Meconium Mineral Content

- Canada Maternal-Infant Research on Environmental Chemicals (MIREC) Study (n= 1,591 meconium samples) – Arbuckle et al. (2016)/Ettinger et al. (2017)
- Aziz et al. (2017), Pakistan study (n = 302)
- Baranowski & Baranowska (1996), Poland study control group (n = 26)
- Haram & Mourabet (1998), New York University Hospital study (n = 32)
- Turker et al. (2013) (n=23)

	Meconium Conc. (ug/g)							
	MIREC (Arbuckle/Ettinger)			Baranowski	Haram	Aziz	Turker	
Metal	Median	95th %tile	Maximum	Control Mean	Mean Range by	Mean Range		
					Gestational Age	by Location	TBD	
Arsenic	NC	0.02	0.55					
Copper				15.2	90.3 - 113.2	1.6 - 28.7		
Manganese	4.9	1 5	40		9.5 - 35.8			
Molybdenum								
Lead	NC	0.0085	0.48	0.0047		1.2 - 14.4		
Zinc				68	156.4 - 365.4	9.5 - 160.3		

NC = not calculated due to infrequent detection

Lines of Evidence to Support Units Error

- McDermott Table 1 Median Concentrations
 - In most literature studies, meconium concentrations are reported as <u>ug/g (ppm)</u> and not ug/kg (ppb)
 - Manganese example [Median; Min Max]
 - Butte = 5.364; 0.388 18.120 ug/g
 - Columbia = 0.00325; 0.0002 0.01283 ug/g
 - MIREC = 4.9; 0.24 40 ug/g
 - · Comparison to MIREC study shows...
 - · Butte concentrations are within the range of expected MIREC concentrations
 - Columbia concentrations are more than 1,000x lower than expected MIREC concentrations
 - Arsenic and lead concentrations show a similar pattern as manganese
- Suggests that the reported units of ug/kg for the Butte dataset are correct in Table 1, but the Columbia dataset is actually ug/g

Lines of Evidence to Support Units Error (cont.)

- McDermott Table 1 Mean Concentrations
 - Copper example
 - Butte = 28.134 ug/g
 - Columbia = 0.01475 ug/g
 - Baranowski Control = 15.2 ug/g
 - Comparison to Baranowski study shows...
 - · Butte concentrations are similar to control group concentrations
 - Columbia concentrations are more than 1,000x lower than the control group concentrations
 - Zinc concentrations show a similar pattern as copper
- Supports the conclusion the units of ug/kg for the Butte dataset are correct in Table 1, but the Columbia dataset is actually ug/g

Lines of Evidence to Support Units Error (cont.)

- McDermott Table 1 ICP-MS Limits of Detection (LODs)
 - Arsenic example
 - MT Laboratory LOD = 5 ug/kg
 - SC Laboratory LOD = 1.4 ug/kg
 - EPA CLP CRQL = 500 ug/kg
 - MIREC LOD = 200 ug/kg
 - Comparison shows the study laboratories were able to achieve LODs 100x to 300x lower than what EPA requires of the CLP laboratories
 - Canada MIREC study shows the LOD were similar to EPA CLP
- ➤ Suggests that the reported LOD units of ug/kg for the MT and SC laboratories may actually be ug/g

Lines of Evidence to Support Units Error (cont.)

- McDermott study does not specify if data validation was performed
- McDermott study indicates no inter-laboratory analyses were performed

If Table 1 is corrected to present consistent units for Butte and Columbia (as ug/g)...

Metal	Butte*	Columbia**	Ratio MT:SC
Arsenic	0.032	<lod< td=""><td></td></lod<>	
Copper	26.311	14.68	1.79
Manganese	5.364	3.25	1.65
Molybdenum	0.059	<lod< th=""><th></th></lod<>	
Lead	NA (0.005+)	<lod< th=""><th>000</th></lod<>	000
Zinc	81.642	43.34	1.88

^{*}Table 1 concentrations were converted from ug/kg to ug/g

Observations -

- Butte levels are within a factor of 2 compared to Columbia
- Butte arsenic is similar to MIREC 95th percentile of 0.02 ug/g
- Butte manganese is similar to MIREC median of 4.9 ug/g
- Only one detect for Butte lead
- Butte lead is less than MIREC 95th percentile of 0.0085 ug/g and similar to Baranowski control of 0.0047 ug/g

^{**}If concentrations as reported in Table 1 were assumed to be ug/g (not ug/kg)

 $⁺ Median\ not\ available\ as\ only\ 1\ sample\ was\ detect;\ detected\ concentration\ is\ reported.$

What else can influence mineral concentrations in newborns?

- Based on meconium metal concentrations
 - Gestational age (24-28 weeks vs. 38-42 weeks)
 - Cu: 1.3x decrease
 - Mn: 3.8x increase
 - Zn: 2.3x increase
 - Birth Weight (<1,500 g vs. >2,500 g)
- Based on blood metal concentrations
 - Maternal age
 - Infant gender
 - Maternal smoking status
 - Season of sample collection
 - · Maternal pre-pregnancy BMI
 - Maternal education level